

CO₂-Neutral Fuels

Adelbert Goede

Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden

i-SUP 2016, 16-19 October Antwerp, Belgium

CO₂ Neutral fuels: What are they?

Hydrocarbons synthesised from water and air

- powered by Renewable Electricity
- CO₂ recirculated after use

Characterised by high energy density and existing infrastructure

Carbon neutral fuel cycle: P2X – CCU

Point source capture of fossil CO_2 \rightarrow not climate neutral, emission delayed

Power-to-X

X = gas or liquid fuel or chemicals

Direct air capture of CO_2 \rightarrow climate neutral fuel cycle

Graves et al., Ren. Sustain. Energy Rev. 15, 1, (2011)

P2X is most critical part both technically and economically

Technology benchmark: costs of H₂

- Electrolysis >6 \in /kg H₂ (fossil fuel <1 \in /kg H₂)
- CO₂ capture: point source 40 €/tonne, direct air 400 €/tonne

Splitting H₂O and/or CO₂ by electrolysis

- Alkaline electrolyte (100 yrs large scale mature technology)
 - Power density low (< 0.5W/cm²)
 - Low hydrogen output pressure (< 30bar)
 - Safety (caustic electrolyte)
- **PEM** (polymer electrolyte membrane), pre-commercial
 - Power density $\sim 1W/cm^2$
 - Rapid dynamic response
 - Degradation membrane
 - Catalyst material Pt, Ir (Scarce)
 - MW unit (Siemens)
- **SOEC** (solid-oxide electrolyser cell)
 - High power density, energy efficiency, output pressure
 - High Temperature operation (800°C and pressure 50-100 bar)
 - Co-electrolysis H₂O and CO₂
 - Degradation under high current density operation

SCIENCE FOR FUTURE ENERGY

Mission: Basic scientific research into Fusion Energy and Solar Fuels, Based on in house high-quality technical infrastructure, collaboration with Academia, National Research Organisations and Industry, building a national community in energy research.

Relocated mid 2015 University Campus Eindhoven

Development time

Why plasma for CO₂ conversion?

Characteristics of CO₂ plasmolysis

Ease conditions for CO₂ splitting by channelling energy in molecular vibration to break chemical bond, not to heat the gas (non-equilibrium)

- Energy efficiency comparable to Electrolysis (~60% demonstrated)
- High productivity: large gas flow and power flow density (45W/cm²)
- Fast dynamic response to intermittent power supply
- No scarce materials employed (Pt catalyst in PEM)

30 kW @ 915 MHz

Out of equilibrium $T_{vib} > T_0$ chemistry

Chemical reaction scheme

 $CO_2 \rightarrow CO + O$ (Δ*H*=5.5 eV) followed by reuse energetic **O** radical $CO_2 + O \rightarrow CO + O_2$ (Δ*H*=0.3 eV) Net $CO_2 \rightarrow CO + \frac{1}{2}O_2$ (Δ*H*=2.9 eV)

Efficiency to be increased by

Concentration of electron energy on vibrational excitation of CO₂ in asymmetric stretch mode

Arrhenius/Fridman:

Activation energy reduced by vibration energy $k = A \exp (aE_v - E_a)/kT$

Experimental Results

CO and O₂ production as function RF Power

Experimental Results

CO production as function Gas flow

Experimental Results

Energy efficiency of CO₂ plasma conversion

O₂ separation from CO (similar sized)

- MIEC mixed ion electron conductive membrane (pressure driven) BSCF (Ba_{0.5} Sr_{0.5} Co_{0.8} Fe_{0.2} O_{3-d}) has been shown to produce an O₂ flux of 60-80 ml/cm²per min.
- Electro chemical Oxygen pump (Voltage driven) YSZ (Yttrium stabilized Zirconia).

Separation of $CO_1 O_2$, CO_2 mixture

YSZ Oxygen selective membrane to separate O_2 from CO, CO₂ mixture Hairpin shaped membranes fitted into SS assembly

From H₂O and CO₂ to sustainable hydrocarbons

i-SUP 2016, 16-19 October Antwerp, Belgium by Adelbert Goede DIFFER

- P2X provides vast seasonal energy storage capacity and flexibility of supply from Renewables
- P2X-CCU enables a CO₂ neutral fuel cycle based on hydro-carbons and existing infrastructure
- Technical challenge: innovation in CO₂ splitting and CO-O₂ separation
- Economic challenge: cost reduction, government regulation, business case expected to emerge around 2030, cost of CO₂ to reach € 200/tonne